The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1  1  X  1  3  1  1  1 2X  1  1  1 2X  1  1  1  1  1  1  0 X+6  1  1  1 2X+6  1  6  1  1  1  1  1  1  1  1  1  1 2X+6 2X+3  1  1  1  1  1  1 2X  1  1  1  1 X+3  1  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+3 2X+1  1 X+2  1  8  7  3  1 X+5 X+7 2X+2  1 X+7 2X+2 2X+4  4 X+8 2X+6 2X+3  1  6 2X+5  0 2X+6 2X  1 X+4 X+2  6  5  1 X+4 2X+6 X+7 X+8 2X+4  1  1 X+5  X  3 2X+4 2X+6 2X+2  1 2X+5 X+2  8 2X+2  1  4 2X+1 2X+4
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+2 2X+4 X+1  8 2X X+3  2 X+7 2X+2  4  X 2X+6  5  7  5 X+5 X+6 X+3 2X+3  1  1 2X 2X+7 X+5  1  3 2X+4 2X+1 2X+7  4  8 2X+5 X+1 X+4 2X+3 2X+5  2 2X+3 X+8 2X  7 2X+2 X+7  X  1  7 X+6 X+1 X+4 2X+8 2X  2  3 X+2

generates a code of length 71 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 136.

Homogenous weight enumerator: w(x)=1x^0+852x^136+1080x^137+2262x^138+2004x^139+1596x^140+2370x^141+1674x^142+1050x^143+1804x^144+1110x^145+960x^146+714x^147+906x^148+444x^149+538x^150+246x^151+42x^152+4x^153+12x^154+6x^155+6x^158+2x^159

The gray image is a code over GF(3) with n=639, k=9 and d=408.
This code was found by Heurico 1.16 in 1.23 seconds.